Adapting RAID technology to
large heterogeneous clusters

Toni Cortes
Barcelona Supercomputing Center




Special thanks to

José Luis Gonzalez
— Universitat Politecnica de Catalunya

Prof. Dr. Jesus Labarta

— Universitat Politecnica de Catalunya
— Barcelona Supercomputing Center




Raid 0

Data distribution
— Round-robin on all discs

Advantages
— Highest bandwidth 0 1 5 3
— Highest capacity ) . ) ;
Disadvantage
— Not tolerant to any failure E > 6 6
8 9 10 11

12 13 14 | | 15

% Storage
b System
\, Hesearch
. Group




Raid 1

Data distribution
— Two replicated RAIDO

Writes
— Done on both copies 0 1 2 3
Reads 0 1 0 1
— From any of the copies
2 3 2 3

— Possible optimizations

Advantages 4 5 4 5
— Fault tolerant

Disadvantages

— Less parallelism
— Wasted space

% Storage
b System
N Research
o Group



Raid 4

Data distribution
— RAIDO plus a parity discs
— Parity computed using XOR

Writes 0-0 10| |20 |30| |D
— Modified data 0-1 1-1 2-1 3-1 B
— Newly parity block

0-2 12| [22] |32 | D

Advantages
— Allows one disc failure 0-3\ 1-3 2-3 3-3 D

Disadvantage 0-3 13| |23 |33]| |

— No write parallelism

— Always use parity disc

Legend: x-y means block x

from stripe y




Terminology

Striping unit
— Block used to distribute data
Stripe
— Set of striping units that share parity computation

Parity block
— Block that keeps the “parity” of a stripe

* Same size as a striping unit

% Storage
b System
N Research
. Group

",



Data distribution
— RAIDA4 plus interleaved parity

Advantages

— Good performance
— Similar to RAIDO

Disadvantage

— Only allows one disc failure

Slow small writes
— More later ©

Raid5

00| [10| [20] |3-0]| | D
01| [11] |21] | ]| |31
02| |12| | B |2-2] |32
03| | P | |13 | 23] |33
@| |03]| [13]| |23] |33

% Storage
b System
N Research
o Group



Parity Computation

Writing performance
— Full stripe =» Efficient

_ XOR
— Small write = Problem

%

%

_7A %_

User Requests

“Small writes” implementation

— Read-write-modify
e Better for “small” requests @ ﬂ

— Regenerate write

* Better for “large” requests

% Storage
b System
N Research
. Group

",




Parity Computation

Writing performance
— Full stripe =» Efficient
— Small write =» Problem

{4 H »” 3 - %
Small writes” implementation 3

— Read-write-modify
e Better for “small” requests

— Regenerate write * *
* Better for “large” requests @ ~
_// %_

User Requests

% Storage
b System
N Research
. Group

",




Why is heterogeneity an issue?

Definition
— A heterogeneous set of disks is a set of disks with different
performance and capacity characteristics

They are becoming a common configuration
— Replacing an old disk
— Adding new disks
— Cluster build from already existing (heterogeneous) components




Traditional solution

Many systems just ignore it: all disks are treated as equal
— The usable size of all disks is like the smallest one
— The performance of all disks is assumed as the slowest one

Implications
— No performance gain is obtained
e Except for some implicit side effect
— Not all potential capacity gain is obtained
* Some systems use the unused disk space to build a virtual disk
Objective of this talk
— Show how to handle heterogeneous sets of disks

— Show how to handle scalability
* Specially how to grow storage systems with minimum overhead

% Storage
b System
N Research
. Group

",




Supercomputing
Center

Disk capacity

Disk capacity growth

2 4 9 18 36 73 146 292 584
Disk capacity (GB)

Data storage space is growing exponentially as disk capacity increases.

% Storage
b System
N Research
o Group



Disk performance

R Disk drive evolution S
16

)
'g 14
§ T 73GB-15,000 || 12
= Pm
T || 268-7.200

rpm 36GB-7,200 10
< rpm
") T T 8
w
3
S 9GB-10,000 36GB-10,000 6

pm pm

o
e 4
o
& 2
o
>
< 0

Disk technology evolution over time

Average |/O access times have decreased over time,
resulting in disks that perform twice as fast.

~ % Storage
Supercomputing System
Center AN Research
. Group




Growth storage needs

Information point of view

— Increase of 30% each year

* How much information 20037
Peter Lyman and Hal R. Varian
School of Information Management and Systems
University of California at Berkeley

Manufacturers point of view

— Increase capacity 50% each year

* Drive manufacturers

e THE DATA STORAGE EVOLUTION. Has disk capacity outgrown its
usefulness?

by Ron Yellin
Terada magazine 2006

% Storage
b System
N Research
. Group

e,




AdaptRaidO: Intuitive idea

Legend: x-y means block x

from stripe y

Place more blocks on 0
larger disks

— Assumed to be faster

— Stripes with different sizes >4 6-1 = 8-1 91

Problem 10-2| |11-2| [12-2] [13-2
— Variable parallelism

_ _ 14-3| (15-3| |16-3| |17-3
* Long stripes in low @

e Short stripes in high @ 18-4| [19-4| [20-4| |(21-4

22-5| |23-5| (24-5| |[25-5

% Storage
b System
See T. Cortes and J. Labarta. Taking Advantage of Heterogeneity in Disk Arrays \ G/?esearch
pS roup




Reducing variance in parallelism

Use distribution like a
repetition pattern
— All areas have short and
long stripes
— Hopefully, most large files
will too

0 1 2 3 4
0-0 1-0 2-0 3-0 4-0
5-1 6-1 7-1 8-1 0-1
10-2| |11-2| (12-2| (13-2| /|26-5
14-3| (15-3| |(16-3| |17-3|/ [31-6
18-4| (19-4| |20-4| |21-4

22-5| [23-5| |24-5| |25-5
27-6| [28-6| |29-6| |30-6
32-7| |33-7| |34-7| |35-7
36-8| |37-8| |38-8| |39-8
40-9| |41-9| |42-9| |43-9

% Storage
b System
N Research
o Group



AdaptRaid0 parameters

Utilization factor (UF)

— One factor per disk
e Larger disks have more blocks?
* Faster disks have more blocks?

Stripes in pattern (SIP)
— We define a pattern using the UF

* Large patterns allow more requests with good disks
e Small patterns allow a better distribution




Computing the location of a block

Formulas
— Disk (B) =
location([B % Blks 1n a pattern].disk
— Pos (B) =
s Blks in a pattern].pos +

location[B %
(B/Blks in a pattern)

Blks per disk in patern[Disk (B)]

*

Metadata

— Location[Blks in a pattern]

* int disk, pos
— Blks per disk 1n patterns[DSKS]

// [SIP * DSKS]




Performance

Read

%Gain
/

Write

\ = = Raid0

e===(0nlyFast

%@Gain

—--
- ey qp = ™
[ X X X X X J

Number of fast disks

n
) U / Hesearch
&JGraup



Parameter sensitivity

Utilization factor (UF)
— Depends on what the administrator wants
Strips in pattern (SIP)
— No big difference between the different values
— The best option is SIP larger than DISKS*2

* Measured experimentally




AdaptRaid5: Intuitive idea

Legend: x-y means block x

from stripe y

Place more blocks on 0
larger disks B | | R [REeE
— Assumed to be faster

— Stripes with different sizes

Singularities 82| | 9-2 10-2
— Last block disk O unused

_ 11-3 12-3| [13-3
e Stripes need 2 blocks
Problem 14-4| |15-4| |16-4
— Small-writes 17-5| l18-5| [19-5

Legend: Pz parity block for

stripe z

% Storage
b System
See T. Cortes and J. Labarta. Taking Advantage of Heterogeneity in Disk Arrays \ Jgeseamh
. roup

",




Reducing the small-write problem

Define the number of
data blocks per stripe

— Divisor of the number of
data blocks in largest stripe

— Capacity wasted

0 1 2 3 4
0-0 1-0 2-0 3-0
4-1 5-1 6-1 7-1
8-2 9-2
10-3 11-3
12-4| 13-4
14-5| |[15-5

% Storage
b System
N Research
o Group



Increasing effective capacity

Step 1

— Use all disks leaving the
unused block in RR way

* Holland and Gibson 92
— Better load distribution
— No capacity is gained
Step 2

— Push blocks down
“tetris-like”

— Variable parallelism

0 1 2 3 4
0-0 1-0 2-0 3-0
4-1 5-1 6-1 7-1
I 8-2 9-2
10-3 11-3 I
12-4 I 13-4
14-5 I 15-5

% Storage
b System
N Research
o Group



Increasing effective capacity

Step 1

— Use all disks leaving the
unused block in RR way

— Better load distribution
— No capacity is gained

Step 2
— Push blocks down
“tetris-like”
— Similar to parity
declustering

— Variable parallelism
* Long stripesin low @
e Short stripes in high @

0 1 2 3 4
0-0 1-0 2-0 3-0
4-1 5-1 6-1 7-1
10-3 8-2 9-2
11-3| |13-4
14-5| |12-4| |15-5
16-6 17-6

% Storage
b System
N Research
o Group



Reducing variance in parallelism

Use distribution like a
repetition pattern

Problem

— Minor problems with long/
short stripes

— Too detailed for this tutorial

 Ask me if interested

0 1 2 3 4
0-0 1-0 2-0 3-0
4-1 5-1 6-1 7-1
10-3 8-2 £/
11-3| (13-4|/ |23-8
14-5| (12-4| |15-5
16-7| |17-7| |(18-7| [19-7
20-8| [21-8| |22-8
26-10 |24-9 25-9
27-10 P8-11
29-12 P29-11] BO0-12

% Storage
b System
N Research
o Group



AdaptRaid5 parameters

Utilization factor (UF)

— One factor per disk
e Larger disks have more blocks?
* Faster disks have more blocks?

Stripes in pattern (SIP)
— We define a pattern using the UF

* Large patterns allow more requests with good disks
e Small patterns allow a better distribution




Computing the location of a block

Formulas
— S’ =
stripe[B % Blks in a pattern] +
(B / Blks in a pattern) * SIP
— Disk (Parity of S) =
parity[S % SIP].disk
— Pos (Parity of S) =
parity[S % SIP].pos +
(S/SIP) *
Blks per disk in patern[Disk (Parity of S)]

Metadata
— Stripe[Blks in a pattern] // [SIP * DSKS]
— Parity[SIP]

* int disk, pos




Performance

Read

\ = == Raid5

\ e QnlyFast

%G@Gain
\
/

Number of fast disks

Number of fast disks

je
n

) U / Hesearch
&JGraup



Parameter sensitivity

Utilization factor (UF)
— Depends on what the administrator wants
Strips in pattern (SIP)
— There is big difference between the different values
e Especially for writes

— Up to 5 times slower with small SIPs
— More sensible for parity distribution

— The best option is a SIP larger than DISKS*2

* Measured experimentally

% Storage
b System
N Research
. Group

",




Recovering a disk

Performed in two steps

— Recovery of lost data (like in RAID5)
* During this step no other disk can fail (vulnerability window)

— Reorganization to improve disk usage
e During this step a disk failure would not be fatal
Vulnerability window comparison

— In heterogeneous arrays reduced up to 30% (depending on load)
* Disk are used better =» reconstruction is faster
* Some kind of parity declustering = reconstruction faster

% Storage
b System
N Research
. Group

",




Overhead for disk recovery]

traces [Hsu03]

C=250GB

SN AT AN

>R)

Raid5 vulnerability
window

Assimilation time (hours)

Cumulative senvice time

-

b stel
See J. L. Gonzalez, T. Cortes Evaluating the Effects of Upgrading Heterogeneous Disk Arrays (\( Z 5esearch
. oup



Scaling RAID architectures

Using traditional RAID architecture does not scale
— Including AdaptRAID

Adding news disk implies reorganizing the whole data
— Re-striping requires the movement of all data-blocks

— Time ¢ for re-layout grows linear in capacity:

Striping

— I *
tstriping_ k Co/d

where kis a constant and C,,, is the already stored capacity

Trend

— Newly integrated capacity C, ., is always smaller than C_,,

new




How expensive is re-striping?

Assumptions
— 36 GByte of data can be re-distributed in each hour
— 100 GByte of new capacity C,,, have to added
— Already existing capacity C ,, between 100 GByte and 1 PByte

alll

Existing capacity (TBytes)

Restriping tim (hours)




If re-striping is not the way ...

Objective: find a way to
— Only migrate the needed amount of data
— Continue having balanced load
— Do not lose the deterministic behavior




AdaptiveZ: intuitive idea

Divide the address space in zones
— Created dynamically each time new disks are added
— Each zone has its own heterogeneous stripping “policy”

When new disks are added, only one zone is restriped

0

Storage size * Storage

b System

See J. L. Gonzalez, T. Cortes. An Adaptive Data Block Placement based on Deterministic Zones (AdaptiveZ) LN Gl‘:;’gifjarch




Initial setup

24576

Let’s assume a first array
— 3 disks 1Gbytes each

— Striping units =» 128KB
e 8192 per disk
e 24576 in total

— Initially we have one zone

% Storage
b System
N Research
o Group




Adding 2 disks: naive way

24576
57344

Adding 2 disks 2
— 2 disks 2Gbytes each

— Striping units =» 128KB
* 16384 per disk
e 32768 of new storage
e 57344 final capacity

Create a new zone with
only two disks

— No data movement

Problem
— NOT balanced

* Only new data in new disks

— No increase in parallelism E oy
% Storage
b System
N ‘Jggi%amh

",




Adding 2 disks: load balancing

10533
24576
57344

Create two new zones
Zonel: old data

— Theoretical minimum
movement to balance load

e Assume new disks should
have 2 times more SU

¢ Cold *(I-Cold/ (Cnew * Cold))
— 14043 SU

Zone2: new data

— Uses all disks

— Only for new data

Problem

— Old data looses parallelism

% Storage
b System
N Research
. Group

",




Adding 2 disks: more parallelism

Create two new zones
Zonel: old data

8418
24576

—| Increase 15% the
theoretical minimum

e 1,15 %
Cold *(1'Cold/ (Cnew + Cold))
— 16149 SU

— Restripe these blocks on all
disks

* Find the adequate UF for

this zone to guaranty
global disk UF

* Small compared to full
restripe

Zone2: new data

65%
performance

benefit, only 15%
restriping
overhead

57344

% Storage
b System
N Research
. Group

",



Adding 2 more disks

Create two new zones

Zonel: old data
— Size= 1.15 *

Cold *(1 -Cold/ (Cnew + Cold) )
* Depending on size

— We create 2 zones

— We merge zones Creating 2
— Restripe these blocks on all SR
disks
Zone2: new data

I 57344 I 57344

57344

o

Merging
zones

L)

% Storage
System
Research
o Group

N




AdaptiveZ parameters

AdaptRaid parameters are used
— One set per zone

% increase on the size to restripe could be changed

— Our evaluation shows that 15% is a good tradeoff
— and suggest no modifications




Computing the location of a block

Formulas

— Jone =
Search 1n zone tree

— Then use AdaptRaid mechanisms and metadata

Metadata

— Zone // Tree of AdaptRaid patterns
// At most 2 new zones per upgrade
// I1f upgrades every 6 months:
// 40 zones in 10 years
// 6 levels in the tree




Load balance after 10 upgrades

ﬁanJjL

% diff conlnp!ﬂl'd to ilcleal lpad

Upgrade number o o




Metadata size after 10 upgradesj

Using average of
10 SIP per pattern

Kbytes




Performance results

VSizeﬂ = poison 8'K, Sequentiality 35% [Zhang 2004]

.
" w = L . al LAY W 5 N = . g
. m = N -
r .-,:".!' . !r_ :!: . !‘II‘—H\;‘I'!‘:!'II—‘!" LA HoU '!!'—!\ LR A ll‘! - :!:r\lr!
. ——, o - = '7\—,"—':-
w & L 1 -~ =
o
a® a - an o a ,
\ TR ALY ’\"l\\l’.l\’\"’\'\/"\’ v \“'s".-\/"\\ N PN TG AR Sl ‘\I" N’
o V']
l oy

.."00...T‘...“.O..“.‘."I.

Cumulative service time (min)

e==AdaptiveZ

—Pseudorandom

Simulation time (hours)

% Storage
b System
N Research
. Group

",



Conclusions

Heterogeneous storage systems can be handled
— We can take advantage of the heterogeneity

They can be scalable

There is another way to solve the same problem

— Randomization

% Storage
b System
N Research
. Group

",



